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ion, is the difference in modeling philosophy. Some engineers
prefer to think of time-domain discretization through mathemati-
cal finite differencing; others prefer to model with transmission-
line networks. Comfort in the modeling concept is far more likely
to lead the modeler to more advanced models, as is illustrated by
Dr. Gwarek in his interesting paper [1].
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Indefinite Integrals Useful in the Analysis of
Cylindrical Dielectric Resonators

DARKO KAJFEZ

Abstract —Little-known integrals are listed, useful for the evaluation of
stored electric energy in cylindrical regions, such as often appear in the
analysis of cylindrical dielectric resonators.

In the analysis of shielded dielectric resonators, it is often
necessary to evaluate the stored electric or magnetic energy
within a cylindrical region, such as regions 1, 2, and 3 in Fig. 1.
The components of the electric field in region 1 are typically
expressed in terms of the function

¢, (kp) =K, (kp)+ al,(kp) ey

where K,,(kp) and I,,(kp) are the modified Bessel functions of
order m, k is the radial wavenumber for the corresponding
region, and a is a constant such that the tangential electric field
vanishes at p = b. The boundary conditions at z=0and z=L
are not important in the present consideration. Either of these
two surfaces may be covered with a perfect electric conductor or,
alternatively, form an interface with a neighboring dielectric
region.

When the stored electric energy in region 1 is required, the
following indefinite integral is needed:

2

f[ & (ko) + pEx L. (ke)|pdo=W(p). (2
The solution W(p) cannot be found in common mathematical
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Fig. 1. Cylindrical region filled with inhomogeneous dielectric materials.

handbooks [1], [2]. Nevertheless, the solution exists as follows:

W(p) = % [«p:,,z(kp) + kipd)m(kp)%(kp)

—(1+ k’fpz)¢3n(kp)]. ©)

When a =0, the result reduces to

f[K’z(kp)erKz(kp)]pdp

2
P ) 2
= — ’ 4+ — . ’
5 [Km (kp) kam(kp)Km(kp)

—(1+ ,:’Ipz)x,%,(kp)]. )

The last formula can be found in [3], unfortunately distorted by
typographical errors. This formula is useful when radius b of the
cylindrical enclosure becomes infinitely large.

The proof of the above formulas consists of taking the deriva-
tive of the right-hand side of (3), and showing that

d—viliﬂ [¢'2(kp)+ o 2<z>m(kp)J. (%)

The derivation of the above identity is based on the fact that
®’(kp), being a linear combination of modified Bessel func-
tions, satisfies

2

¢”(kp)—~—¢’(kp)+(1+k’;lz)¢m(kp)- (6)

Another, similar identity can be obtained for ordinary Bessel
functions, needed for evaluation of the stored energy in region 2:

f[zl/z(kp)Jr e 2\P2(kp)]pdp V(p) @)

where ¢,,(kp) is a linear combination of the ordinary Bessel
functions:

Ym(kp) =J.(kp) + BY, (kp). (3
The corresponding solution is

V(o) =% [¢;3(kp)+ (k) Vi)

+( k"Zz)xpz(kp)} ®)
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For B =0, the last solution reduces to containing typographical errors. The formula is useful for evalua-
5 tion of energy stored in region 3 or, alternatively, in region 2
2 2 when radius ¢ becomes infinitely small.
J| 552 (ko) + 5 T (ko) | pde
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